from pipecat.services.sambanova.llm import SambaNovaLLMService
from pipecat.services.sambanova.stt import SambaNovaSTTService
from pipecat.transcriptions.language import Language
from pipecat.pipeline.pipeline import Pipeline
# Instantiate SambaNova services
sambanova_llm = SambaNovaLLMService(
api_key='your-sambanova-api-key',
model='Llama-4-Maverick-17B-128E-Instruct',
params=SambaNovaLLMService.InputParams(
temperature=0.7,
max_tokens=1024
)
)
sambanova_stt = SambaNovaSTTService(
model="Whisper-Large-v3",
api_key="your-sambanova-api-key",
language=Language.EN,
prompt="Transcribe the following conversation",
temperature=0.0
)
# Add the SambaNova models to your pipeline
pipeline = Pipeline([
transport.input(),
sambanova_stt,
...
sambanova_llm,
tts,
transport.output(),
...
])